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Properties of Mn&N and MnrXC types of compounds are analyzed on the basis of a model for the 
electronic band structure, which consists of a large conduction band overlapping a narrow band that 
results from the strong hybridization between the p orbitals of the metalloid and some of the d orbitals 
of the manganese. The crystal field at the sites of manganese is assumed to be strong. The structure of 
the narrow band is calculated in the tight-binding model. The Fermi energy lies very close to a sharp 
singularity in the density of states. in the cubic and Pauli paramagnetic phase, such a singularity has a 
sixfold degeneracy. The magnetic and structural instabilities, which appear when the temperature is 
decreased, are explained by the removal of that degeneracy by a shear strain and the formation of 
small magnetic moments. The phase transitions can be studied in detail by expanding the variation of 
the free energy with respect to the shear strains and the magnetic moments. The coefficients of the 
expansion are calculated as functions of the temperature. The variation of the volume is explained by 
the existence of coupling terms to the shear strain and to the magnetic moments. 

Introduction 

The Mn3XN and Mn&C types of com- 
pounds, with the perovskite structure, form 
a rather extended family because of the 
large number of substitutions which can be 
made on the third element X. All of them 
are magnetic conductors, and they are of 
great interest because of the existence, in 
the temperature range lying roughly be- 
tween 200 and SWK, of magnetic and 
structural phase transitions, which have 
been extensively investigated during the 
last ten years by several experimental tech- 
niques, such as X-ray and neutron diffrac- 
tion and magnetic and thermal measure- 
ments (I -2Z). 

In the high-temperature limit all these 
compounds are in a cubic and Pauli para- 

magnetic phase, as is shown by the diffrac- 
tion data and by the behavior of the para- 
magnetic susceptibility which becomes 
nearly temperature independent for large 
values of the temperature. When the tem- 
perature decreases, one observes a general 
tendency of these compounds to undergo a 
first-order structural phase transition which 
consists of a small tetragonal shear strain of 
the cubic unit cell, with a c/a ratio which 
can be a little larger or a little smaller than 
unity. Also, a second-order magnetic phase 
transition is observed, which consists of the 
formation of small magnetic moments on 
the manganese atoms, with several possible 
structures of the resulting ordered magnetic 
phase. According to the individual case, the 
structural and the magnetic phase transi- 
tions take place or not at the same critical 
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value of the temperature. Phase transitions 
with a discontinuity in the variation of the 
volume alone have never been observed. 
But a variation of the volume can be in- 
duced by the coupling to a shear strain or to 
the formation of small magnetic moments. 

A systematic study of the effect of the 
substitutions on the precise features of the 
previous properties, such as, for instance, 
the numerical values of the critical temper- 
atures, of the shear strains, of the magnetic 
moments, and so on, shows the great influ- 
ence of the number of electrons which oc- 
cupy the energy bands. 

In this article, we show how the previous 
properties can be analyzed in detail on the 
basis of a model we have proposed before 
for the electronic structure of these com- 
pounds. In Section I, we recall the salient 
features of our model. In Section II, we cal- 
culate the effect of a shear strain and of the 
formation of small magnetic moments on 
the electronic structure. In Section III, we 
discuss the stability of the cubic and Pauli 
paramagnetic phase at absolute zero. In 
Section IV, we calculate the effect of the 
temperature, and we discuss the features of 
the different possible phase transitions in 
our model. 

I. Model for the Band Structure 

In this section we recall the salient fea- 
tures of the model we have introduced in 
previous publications (22-26), and we go 
more deeply into the discussion of some of 
the parameters of this model. 

I.1. Physical Hypothesis 

Our model is based on the following 
physical hypothesis: 

(1) The Fermi energy EF lies inside a nar- 
row d-p band partly overlapping a much 
larger conduction band. 

(2) The crystal field acting on the manga- 
nese atoms located at the centers of the 
faces of the cubic unit cell (Fig. 1) is as- 

XJ 
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o x = Sn,Zn,Cu,Ga,Ge ,....... 

FIG. 1. The perovskite structure. 

sumed to be strong enough to split the d 
band into well-separated subbands, the 
symmetries of which are, respectively, alg, 
e8, big, and bzg in the direction of decreas- 
ing energies (Fig. 2). 

(3) The d band as a whole being roughly 
half-occupied, the Fermi energy EF is as- 
sumed to lie inside the eg subband. 
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FIG. 2. The atomic levels of the p orbitals of the 
metalloid (N or C) and of the d orbitals of the three 
manganese atoms Mn, (where Mn, is the manganese 
atom on the a axis of Fig. 1, with a = X, Y, or Z). The 
crystal field at the sites Mn, has the symmetry D4,,, and 
is assumed to be strong. Ep is the Fermi energy. 
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(4) The energy levels of the p states of the 
metalloid (N or C), which is located at the 
center of the cubic unit cell (Fig. l), are 
assumed to be very close to the Fermi en- 
ergy EF, and thus to the energy levels of the 
d subband with the symmetry eg (Fig. 2); 
this hypothesis is supported by several ex- 
periments (3, Z7, 18) concerning the atomic 
form factor of the metalloid in these com- 
pounds, which show that the p orbitals are 
only partly occupied; thus, when calculat- 
ing the band structure in the neighborhood 
of the Fermi energy, one must take into ac- 
count both the p states of the metalloid and 
the d states of symmetry eg of the manga- 
nese; as a result, the Fermi energy EF lies 
inside a narrow p-deg subband well sepa- 
rated from the other d subbands. 

(5) The structure of this narrow p-deg 
subband has been calculated (25) in the 
tight-binding approximation, by taking into 
account, as a first approximation, the trans- 
fer integrals between nearest neighbors 
only, that is, between the p orbitals of the 
metalloid at the center of the cubic unit cell 
and the d orbitals with symmetry eg of the 
manganese atoms at the centers of the faces 
of the same unit cell; the transfer integrals 
between next-nearest neighbors, and thus 
between different manganese atoms, were 
neglected; the mixing of the narrow p-dcg 
subband with the orbitals of the metallic at- 
oms located at the comers of the cubic unit 
cell was also neglected, these last orbitals 
probably contributing to the large conduc- 
tion band. 

1.2. Structure of the Narrow p-d,, 
Subband 

In the nearest-neighbor approximation, 
the narrow p-d,, subband is made of three 
degenerate subbands, SX, Sr, and Sz, each 
being built with three orbitals per unit cell, 
namely, 

SX with the orbitals px, dyx(Mnr), dzx 
(Mnd , 

Sr with the orbitals py, dzr(Mnz), dxu(Mnx), 

Sz with the orbitals pz, dxz(Mnx, d&Mnr), 

where the three orbitals pa, with a = X, Y, 
or 2, belong to the metalloid at the center 
0 of the unit cell (Fig. l), and where 
d,(Mn,), with y,a = X, Y, or 2, are the d 
orbitals with symmetry eg belonging to the 
manganese atoms Mn, located at the cen- 
ters of the faces of the unit cell, respec- 
tively, in the directions of the three axes y 
= X, Y, and 2 from the center 0 of the unit 
cell (Fig. 1). 

Thus in the cubic paramagnetic phase 
there are both a threefold degeneracy due 
to the fact that the three subbands Sr, Sy, 
and SZ are identical and a twofold degener- 
acy due to the spin. 

Detailed calculations show that each of 
the three subbands S, involves a bonding 
subband and an antibonding subband, well 
separated from each other, and a residual 
unhybridized d subband, the width of which 
vanishes in the nearest-neighbor approxi- 
mation. When calculating the density of 
states n(E) one obtains finite discontinui- 
ties at the edges of the bonding and anti- 
bonding subbands and logarithmic singular- 
ities roughly in their middles. We must add 
to these singularities the infinite one, de- 
scribed by a Dirac delta function, which 
results from the unhybridized d subband 
with vanishing width (Fig. 3). 

1.3. The Fermi Level Position 

Experimental data for the electronic spe- 
cific heat (21) indicate a large numerical 
value of the electronic density of states 
n(EF) at the Fermi level. It can be explained 
in our model by assuming that the Fermi 
energy EF is very close to one of the infinite 
singularities of the density of states n(E). 
By going more deeply into the discussion of 
the filling of the bands, one can show that, 
at least in some of the compounds we are 
interested in, the Fermi energy EF should 
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be very close to the energy E, of the loga- 
rithmic singularity in the antibonding sub- 
band (Fig. 3). We have thus retained this 
hypothesis for our present calculations; but 
we may notice that we would probably have 
obtained similar physical results if EF had 
been assumed to be very close to one of the 
two other infinite singularities of n(E). 

1.4. Analytical Expression of the Density 
of States 

In the neighborhood of the energy E, of 
the logarithmic singularity in the antibond- 
ing subband, we can use for the total elec- 
tronic density of states, in the cubic para- 
magnetic phase and for each of the two spin 
directions, the approximate expression 

in(E) = 3A(E - E,) + R(E), (1) 

where the factor 3 in front of the first term, 
which contains the singularity, comes from 
the threefold degeneracy between the three 
subbands Sx, Sy, and Sz, identical in the 
cubic phase, and where the second term 
R(E), which is entirely regular, is mainly 
due to the large conduction band; the ana- 
lytical expression of the singularity is 

f@ - Ed = C Log ,E _” E,, , (2) 

with 

E, = i(E,, + Ed) + !&A2 + 16 P2, (3) 

v= 
16 p2 

VA2 + 16 p2’ 
and c=& 

(4) 

where Ep and Ed are the intraatomic ener- 
gies of an electron occupying, respectively, 
a p orbital on the metalloid and a deg orbital 
on the manganese, A = Ep - Ed, and p is 
the transfer integral between a pa orbital on 
the metalloid and a dJMn.J orbital of sym- 
metry eg on the nearest-neighboring manga- 
nese Mq, with or,y = X, Y, or 2 and a f y. 

Ed Ep 
E 

5 

Fro. 3. Electronic density of states of the p-dCg sub- 
band as calculated in our model. 

IS. Physical Origin of the Parameters Ep 
and Ed 

As is usually the case in narrow bands 
(25), we may assume that, inside the p-d,, 
subband in our model, the interaction be- 
tween two electrons occupying the same 
atomic site is much larger than the interac- 
tion between two electrons occupying two 
different atomic sites. This is equivalent to 
assuming that the main part of the interac- 
tion between the electrons in that subband 
is contained in the intraatomic energies 
E,( pJ and E,[ d,,(Mn,)] of an electron with 
the spin u occupying, respectively, the or- 
bitalp& = X, Y, or Z) on a metalloidic site 
or the orbital d,,(Mn,) (a,~ = X, Y, or 2; a 
# y) on the site Mn,. 

In the Hartree-Fock approximation, 
these intraatomic energies can be written as 

&h) = T(I)4 

= Ud,(Mn,)l + U”, (n-,[d,(Mn,)l) 
+ vi (n-,[d,~,(Mn,~)l) + (Uj - Jd) 

(n,[d,dMn,~)l), (6) 

where T(pn) and T[d,,(Mn,)] include the 
kinetic energy of the electron occupying the 



BAND STRUCTURE IN METALLIC PEROVSKITES 279 

orbital pa or d,(Mn,) and its interaction 
with the hard cores of the nucleus in the 
crystal, i.e., with the hard core of the nu- 
cleus at the site occupied by the electron 
and with the part of the crystal field which 
is produced by the hard cores of the nu- 
cleus at the other sites; UL and Ui (i = 0 or 
1) are the direct Coulomb interactions be- 
tween two electrons on the same site, occu- 
pying the same (p or d) orbital for i = 0, and 
two different (p or d) orbitals for i = 1; 
Jp and Jd are the corresponding intra- 
atomic exchange interactions; (n&J) and 
(n,[d,,(Mn,)]) are the averaged values, in 
the Hat-tree-Fock approximation, of the 
numbers of electrons with the spin u on the 
orbitals pa and d,(Mn,), respectively; fi- 
nally we must take y’ # y in Eq. (6). 

The numerical estimation of the parame- 
ters appearing in Eqs. (5) and (6) is difficult. 
But we shall not reduce much the generality 
of our results by assuming that: 

(1) L$ = t$, (= UP) and U”, = Ufi (= Ud); 
(2) T(p,) and T[ d,,(Mn,)] do not much 

depend on (r (# y), and they will be simply 
written, respectively, T(p) and T[ d(Mn,)] 
for any cw; 

(3) alI the p or deg orbitals belonging to 
the same site are roughly equally occupied 
by electrons with a given spin u, i.e., 

and 

hA~,,(Mn,)l = B (n&h,)), 

where (n,(N)) and (n,(Mn,)) are, respec- 
tively, the averaged total numbers ofp elec- 
trons on a metalloidic site (N or C) and 
of deg electrons on a Mn, site, both of 
them with the spin u. With these further 
approximations, the energies E&J and 
E,[d,,(Mn,)] no longer depend on cr; 
they will be written, respectively, E,(p) 
and &[d(Mn,)]; and Eqs. (5) and (6) take 

the simpler forms 

&CP) = T(p) + 
SUP - 2J, 

6 n(N) 

-u 
Up + 2J, 

6 m(N), (7) 

&I dW,)l = T[ d(Mn,)l 
+3ud-& 

4 n(Mn,) 

ud + Jd 
- u - m(Mn,), (8) 4 

where the spin u may have the two values 
?, and where we have introduced the total 
averaged numbers of electrons 

n(N) = (n+(N)) + (n-(N)), 

n(Mn,) = (n+(Mn,)) + (n-@&N 

and the magnetic moments (in Bohr magne- 
ton units) 

m(N) = (n+(N)) - (n-(N)), 

m(Mn,) = (n+(Mn,N - (n-(Mn,)), 

respectively, on a metalloidic site (N or C) 
and on a site Mn,. 

Equations (7) and (8) are valid in the gen- 
eral case where small lattice distortions and 
magnetic moments are present. But in the 
special case of the cubic paramagnetic 
phase, the magnetic moments m(N) and 
m(Mn,) vanish, and the parameters 
T[d(Mn,)] no longer depend on y and can 
be simply written T(d); we obtain the ex- 
pressions of the two parameters we had in- 
troduced in Section I.4 for the cubic para- 
magnetic phase: 

Ep = T(P) + 
SUP - 2J, 

6 n(N), (9) 

3ud - Jd 
Ed= T(d)+ 4 n(Mn). (10) 
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II. Perturbation of the Band Stmctwe by 
Small Distortions and Magnetic Moments 

Equation (1) gives the density of states 
n(E) in the neighborhood of the logarithmic 
singularity Es in the cubic paramagnetic 
phase. As we can see from Eqs. (2), (3), and 
(4), n(E) depends on the three parameters 
l3, Ep, and Ed, and it can be shown that a 
small lattice distortion and the appearance 
of small magnetic moments perturb the 
density of states in the neighborhood of the 
singularity essentially by their effects on 
these three parameters. In particular, the 
perturbation of the regular part R(E) of the 
density of states n(E) given by Eq. (1) is 
assumed to be very small and will be ne- 
glected. 

By a small lattice distortion which pro- 
duces distinct variations of the lattice pa- 
rameter a along the three orthogonal edges 
of the cubic unit cell, the transfer integral p 
between next-nearest neighbors gets differ- 
ent values, 

Pa = P exp(+qe,J, (11) 

along the three directions (Y = X, Y, Z, 
where eaa are the diagonal components of 
the strain tensor and q is a coefficient which 
governs the exponential variation of the 
overlap between p and de8 orbitals belong- 
ing to next-nearest neighbors when the in- 
teratomic distance varies. 

The effect of a small lattice distortion 
which lowers the symmetry can be a split- 
ting of the value of the first term T[ d(Mn,)] 
in Eq. (8) into three different values de- 
pending on y. But it is clear that the elec- 
tronic population n(MnJ increases (respec- 
tively decreases) when the energy level 
Tld(Mn,)] is decreased (respectively in- 
creased) by the distortion. And, as 3 Ud - 
Jd is large and positive, we shall assume 
that the opposite effects of the lattice dis- 
tortion on the first two terms of Eq. (8) 
roughly cancel each other. 

Thus we are led to assume that Ep and Ed 

are not very sensitive to a small lattice dis- 
tortion but are split by the appearance of 
small magnetic moments m(N) and m(Mn,) 
into new values which depend on the spin 
u, and which, according to Eqs. (7), (8), (9), 
and (lo), are given by 

EMMnJl = Ed - ; &j&i’fn,), (13) 

where u = 2, and where we have intro- 
duced the effective parameters 

z = ‘J’ + 2Jp md z _ ud + Jd 

P 3 d- 
Y. 

2 

We have shown in Section I.2 that in the 
cubic and Pauli paramagnetic phase the 
narrow p-d,, subband is itself made of six 
identical S, subbands, where OL = X, Y, or 
Z and where u = f are the up and down 
spin directions; in particular, all these six 
subbands have the same logarithmic singu- 
larity of their density of states at exactly the 
same energy Es. The effect of a small lattice 
distortion, by which the lengths of the three 
orthogonal edges of the cubic unit cell no 
longer remain identical, and of the appear- 
ance of small magnetic moments m(N) and 
m(Mn,) will be to remove, at least partly, 
this sixfold degeneracy, and in particular to 
split the logarithmic singularity into several 
new distinct logarithmic singularities, the 
respective energies of which, a little shifted 
from Es, can be calculated from Eqs. (3), 
(ll), (12), and (13). 

More precisely, the structure of each 
subband S, is determined by the two trans- 
fer integrals & and l3,t between nearest 
neighbors, from the orbitalp, to the orbitals 
d,(MnJ and d,,,(Mn+), respectively, 
where the sequence of the indices (Y, y, and 
y’ is a permutation of X, Y, and Z. Equation 
(11) shows that, under the action of a lattice 
distortion with components e, # eytyI of the 
strain tensor, the transfer integrals pv and 
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Pv’, which were equal in the cubic phase, 
get into values which are different from 
each other; it follows from Eq. (3) that, for 
each spin direction, the singularity of the 
subband S,, which is located at the energy 
E, in the cubic phase, is split into two new 
distinct singularities located at the energies 
Es, and Es, which are the new values ob- 
tained in place of Es when substituting, re- 
spectively, p-, and pup for p in Eq. (3). Thus 
the singularity of the subband S, is split by 
the lattice distortion into two new ones 
when e, # eyfyp, and is not split, but simply 
a little shifted from E,, when e, = eylyf. 

where my = m(Mn,) is a simplified notation 
for the magnetic moment at the site Mn, u 
= + are the up and down spin directions, 
the index y has two possible values which 
are the two symbols of the sequence X, Y, 
and Z which differ from OL (i.e., y = Y or Z 
when (Y = X, and so on by permutation of 
X, Y, and Z), and we have introduced the 
two new effective parameters 

x 
-4P*aq 

= VA2 + 16B* 
and 

Furthermore, for nonvanishing magnetic 
moments m(N) and m(MQ, the parameters 
Ep and Ed, which occur in Eq. (3) and in A = 
Ep - Ed, must be replaced, respectively, by 
E,,(p) and E,[d(MnJ, the expressions of 
which are given by Eqs. (12) and (13). Thus 
we see that, besides the splittings induced 
by the lattice distortion, the appearance of 
small magnetic moments m(N) and m(Mn,) 
gives rise to small shifts of the energy Es of 
the singularity, which have opposite values 
for the two opposite spin directions cr = ~fr ; 
it follows that there is an additional splitting 
of the singularities. In the calculation, the 
small variations of the parameter A in Eq. 
(3) are taken into account by expanding the 
square root to the first order in the small 
magnetic moments. Moreover, it seems 
reasonable to assume that the intraatomic 
coulomb repulsion between two electrons 
is much smaller inside the metalloid than 
inside the manganese, and thus to neglect 
the parameter Zp in Eq. (12) with respect to 
the parameter Id in Eq. (13). 

We see from Eq. (14) that the splitting of 
the singularity is complete when all the di- 
agonal components e, of the strain tensor 
and all the magnetic moments my at the dif- 
ferent Mn, sites are different, but it is not 
complete when some of the diagonal com- 
ponents eyy and some of the magnetic mo- 
ments my are equal. We also see that in any 
case two singularities of the distorted and 
magnetic phase are located at the same en- 
ergy E,,n, each one in one of the two dis- 
tinct subbands S, and &I, such that the se- 
quence of indices y, (Y, and 0~’ is a 
permutation of X, Y, and Z. Thus, even in 
the extreme case of a complete splitting, 
the singularity is split only into six new dis- 
tinct singularities, which are associated 
withr=X, Y,orZando= +;andthis 
result is in agreement with the existence of 
a sixfold degeneracy in the cubic and Pauli 
paramagnetic phase. 

Thus, as a result of both a small lattice 
distortion and the appearance of small mag- 
netic moments, the singularity of each sub- 
band S,, which is located at the energy Es in 
the cubic and Pauli paramagnetic phase, 
can be split into four distinct new singulari- 
ties located at the energies 

The small lattice distortion and the ap- 
pearance of small magnetic moments give 
rise to small variations of the parameters C 
and v which occur in Eq. (2) and are given 
by Eqs. (4). But the effect of these small 
variations on the density of states is very 
small when compared to the effect of the 
splitting of the singularity. Therefore we 
shall consider C and v as constant parame- 
ters. As a consequence of this approxima- 
tion, the new density of states Q,,(E) of E -I.0 = Es + he,, - Fj Lmy, (14) 
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the subband S,,,,, in the neighborhood of the 
split singularity, in the distorted and mag- 
netic phase, simply results from the split- 
ting of the density of states ii(E - E,) into 
two identical new ones, with equal weights, 
but centered at the two distinct energies 
Ey,m and E,,,, i.e., 

RS,,(E) = WE - E,,,) 
+ bii(E - E,~,,,), (15) 

where the analytical expression of fi is 
given by Eq. (2), and the sequence of indi- 
ces (Y, y, and y’ is a permutation of X, Y, 
and 2. 

Finally, the approximate expression 
n*(E) of the total density of states in the 
neighborhood of the split singularity, in the 
distorted and magnetic phase, is given by 

n*(E) = c ns,JE). (16) 
u=X,Y,Z 

O=t 

By using expression (15) for n+ (I?), and 
as each one of the energies Ey+, appears 
twice in Eq. (16), we obtain as a final result 

n*(E) = ,=;yz fi(E - E,,,) + 2W-k (17) 
. I I c=e 

where, as indicated at the beginning of this 
section, the regular contribution R(E), due 
to the large conduction band, is assumed to 
be nearly unaffected by the small lattice dis- 
tortion and the appearance of small mag- 
netic moments. 

III. Discussion of the Stability of the 
Undistorted Cubic and Pauli Paramagnetic 
Phase at Absolute Zero 

As usual, to discuss the stabilities of the 
different possible phases of the crystal we 
must compare their free energies; and thus, 
to discuss the stability of the undistorted 
cubic and Pauli paramagnetic phase, we 
must calculate the variation 6F of the free 
energy of the crystal when going from that 

phase to any of the distorted magnetic 
phases, an instability being expected in the 
cases where 6F is negative. But it is clear 
that, when the Fermi energy EF is close to a 
sharp singularity of the density of states, 
which can be split into several new singu- 
larities both by small lattice distortions and 
by the appearance of small magnetic mo- 
ments, a large contribution 6F’, to 6F arises 
from the relatively large number of elec- 
trons which are transferred, inside the 
p-de8 subband in our model, from the new 
singularities with higher energies to the new 
ones with lower energies (Fig. 4). Since the 
energies of the transferred electrons are 
lowered, the contribution SF, is negative 
and thus can produce an instability of the 
undistorted cubic and Pauli paramagnetic 
phase. Furthermore, this electronic trans- 
fer being largest at low temperature, where 
the Fermi Dirac function well separates oc- 
cupied from unoccupied states, the magni- 
tude of the absolute value of the term 6F, 
and thus the tendency to the instability are 
largest at low temperature. 

The previous contribution SF,, which is 
specific of conducting materials with nar- 
row degenerate subbands at the Fermi en- 
ergy, can be explicitly calculated in our 
model. But to obtain the entire expression 

nf ]\‘n (EeEs~,,Ej 

Es 
WE 

nl (I[+ lli c;f in ZR(E~ 

w 

FIG. 4. Splitting of the degenerate singularity in the 
electronic density of states by a tetragonal shear strain 
and the formation of small magnetic moments on the 
manganese atoms. The density of states is pictured (a) 
in the cubic and Pauli paramagnetic phase and (b) in 
the distorted and magnetic phase. 
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of 8F, we must add to 6 Fe a term 6 FO which 
takes into account all the other contribu- 
tions, which are not specific of that kind of 
materials, and, for instance, exist in any 
normal metal. This last term 6F0 is difficult 
to calculate; but it is reasonable to assume 
that: 

(1) 6 F0 tends to stabilize the undistorted 
cubic and Pauli paramagnetic phase (which 
indeed is known to exist at high tempera- 
ture), and thus 6Fo is positive; 

(2) as usual in the normal metals, for in- 
stance, where the variation of the elastic 
constants with the temperature is known to 
be rather small, 6F0 does not depend much 
on the temperature, the opposite of 6F,; 

(3) 6Fo probably has the same order of 
magnitude as in the normal metals. 

To sum up the previous discussion, the 
sign of 6F, and thus the possible instability 
of the undistorted cubic and Pauli paramag- 
netic phase, depends on the competition 
between the term 6 FO, which is positive and 
nearly temperature independent, and the 
term 6F,, which can be negative and de- 
pends greatly on the temperature. Further- 
more, the term 6F, can be calculated in our 
model as a function of the temperature, but 
the nearly constant term 6F0 cannot be cal- 
culated, but only roughly estimated, and it 
will be introduced in our calculations as an 
adjustable parameter independent of the 
temperature. 

In this section we calculate 6 Fe, and thus 
discuss the stability of the undistorted cubic 
and Pauli paramagnetic phase, at absolute 
zero. The effect of the temperature will be 
calculated and discussed in Section IV. 

As usual in the Hat-tree-Fock approxima- 
tion, the total energy of the narrow subband 
can be obtained by summing the energies of 
all the electrons contained in that subband, 
and then subtracting from the result the av- 
eraged interaction energy between them, 
which has been counted twice when doing 
the summation of the electron energies. 
The averaged interaction energy between 

all the electrons occupying the subband is 
difficult to calculate. But, according to the 
approximations we made in Sections I.5 
and II, the largest contribution to the varia- 
tion of this interaction energy comes from 
the appearance of small magnetic moments 
my on the manganese sites y, Thus, at ab- 
solute zero, the term 6 Fe, in the total varia- 
tion SF of the free energy, is given by 

SF, = I” En*(E) dE 

- I EF En(E) dE + & 2 rnc, (18) 
y=X,Y,Z 

where EF and Es are the Fermi energies in 
the undistorted nonmagnetic and distorted 
magnetic phases, respectively, and where 
we do not need to specify the lower limits in 
the integrals, since the contributions from 
the energy levels far below the Fermi en- 
ergy either cancel or are included in the 
term 6 FO of 6F. The relation between Es 
and EF results from the conservation of the 
total number of electrons in the crystal, and 
thus is given by 

I” n*(E) dE = I” n(E) dE. (19) 

The densities of states n(E) and n*(E) are 
given by Eqs, (1) and (17), respectively. By 
obvious changes in the variables of integra- 
tion, equations (18) and (19) can be written, 
respectively, 

6F, = x /G-E”n+Es (E + Ey,cr - E&(E 
YP 

- Es) dE - 6 I” Efi(E - E,)dE 

+2 EF I E’ EWE) dE + 4 Id x rnt (20) 
Y 

and 

+ 2 j-z Z?(E) dE = 0, (21) 
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where the expression ofE,,c as a function of 
the diagonal component eW of the strain 
tensor and of the magnetic moment my is 
given by Eq. (14). 

As we show in the Appendix, expression 
(20) is equivalent to 

)jF, = ; j-E~-E”‘+E’ (E - E,)ii(E - Es) dE 

+ x Ey,o \E~-Ey’u+Es ii(E - Es) dE 
YP 

+ 2x7) I 
EF fi(E - Es) dE 

+ 2 jET ERQ dE + iZ,j 2 m:, (22) 
Y 

where q = c e, is the relative volume 

variation. 
As the Fermi energy EF has been as- 

sumed to be very close to the singularity Es, 
and for distortions and magnetic moments 
small enough, the difference E - Es is very 
small for any value of E lying inside the 
narrow interval of integration in the first 
term of expression (22), and this term can 
be neglected as compared to the second 
term. Furthermore, on taking into account 
the relation (21), we have 

2 j-E: ER(E) dE = 2Es 1;; R(E) dE 

=- Es g ~~~-E”u+’ a fi(E - Es) dE. (23) 

Combining Eqs. (22) and (23), we obtain 

SF, = c (E,,, - Es) 
-w 

G-E,,~+E. I EF 
ii(E - Es) dE 

+ 2hq 
EF 

I ii(E - Es) dE + $Zd 2 m$ 
Y 

(24) 

where the new value Eg of the Fermi energy 
must be determined by using Eq. (21). 

The second term in expression (24) of 

6 F, is linear in the relative volume variation 
q. Thus a stable state of the system can 
exist only if we assume that this term of 6 F, 
is exactly cancelled by an opposite term in 
6F0, which comes from other contributions 
to the free energy. Moreover, SF0 contains 
elastic terms KO q* and MO 2 (erv - q/3)*, 

where & and MO are the ordinary contribu- 
tions to, respectively, the bulk modulus and 
the shear modulus involved in that kind of 
distortion. Thus, at absolute zero, the vari- 
ation of the total free energy of the crystal 
can be written as 

6F = x (E,,cr - E) -YQ 
a( E - Es) dE + #Z, c rn: 

Y 

+ &q* + MO C (e, - q/3)*. (25) 
Y 

By expanding expression (25) of 6F to the 
second order with respect to e,, my, and q = 

c, e, we obtain 

6F = fi(EF - E,) 

6% - EF) c uy,o - 
Y.0 

+ 4Zd 2 rnt + &q* + MO 2 (em - q/3)*, 
Y Y 

(26) 

where, according to Eq. (14), we have in- 
troduced the new quantities 

UY,U = Ey,o - Es = Ae, - s Zemv (27) 

lx %7 = 2A x eyy = 2hq, (28) 
Y.0 Y 

which satisfy the relations 

x u;,~ = 2h2 c e’, + 4 Zz c m$. (29) 

We*ian see from’expression (;6) that, to 
obtain the expansion of 6F to the second 
order, we need to know the expansion of Eg 
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- EF only to the first order with respect to 
the same quantities. By expanding Eq. (21) 
to the first order, and using property (28), 
we obtain 

6(Z$ - EF) ii(EF - Es) - 2hqii(EF - Es) 
+ 2(E; - E,)R(E,) = 0. (30) 

The result (30) shows that only a variation 
of the volume of the crystal can induce a 
linear variation of the Fermi energy. 

Finally, by using Eqs. (26), (28), (29), and 
(30), we explicitly find the expansion to the 
second order of the variation SF of the total 
free energy of the crystal at absolute zero, 

6F = K q2 + M 2 (e, - q/3)2 
Y 

+ 41 z m&, (31) 
Y 

where the total bulk modulus K, the total 
shear modulus M, and the coefficient Z have 
the expressions 

K = K. - if A2 R(E,), (32) 

M = M,, - 2 h2ti( EF - Es), (33) 

z=zd- 2 Ziii(E~ - Es). (34) 

In our model, the density of states A(E - 
Es) is given by Eq. (2). It is the larger as the 
energy E is the closer to the energy Es of the 
logarithmic singularity. Thus we see from 
Eqs. (31) and (33) that the cubic phase is 
unstable at absolute zero when the Fermi 
energy EF is close enough to the singularity 
Es to make fi(E~ - Es) larger than Md2A2, 
and thus to make the total shear modulus M 
negative. Similarly, we see from Eqs. (31) 
and (34) that the Pauli paramagnetic phase 
is unstable at absolute zero when EF is close 
enough to Es to make fi( EF - Es) larger than 
Zd/2Zz, and thus to make the coefficient Z 
negative. As A(E - E,) is an even function 
ofE - Es, which monotonically decreases 
as jE - Es\ increases, we shall introduce the 
critical values E& = Es + X,, and E&, = Es 
+ XFm, where XF, and XFm are positive and 

are defined by the conditions M,-, = 2 X2 
fi(Xr,) and Zd = 2 Zf fi(X&. When 1 EF - E,( 
is larger than XrC and XF~, the cubic phase 
and the Pauli paramagnetic phase are both 
stable, or at least metastable,’ at absolute 
zero. On the contrary, when 1 EF - Es1 is 
smaller than XF, and Xi+,,, the cubic phase 
and the Pauli paramagnetic phase are both 
unstable at absolute zero. When the value 
of IEF - E,( lies between XrC and Xr,,,, ei- 
ther the cubic or the Pauli paramagnetic 
phase is unstable at absolute zero: when 
MdX2 is larger than Zd/Z& XrC is smaller than 
Xr,,,, and when the Fermi energy EF satis- 
fies the condition Xr, < jEF - Es] c XF,,,, 
the cubic phase is stable, or metastable, at 
absolute zero, but it has nonvanishing mag- 
netic moments; on the contrary, when Md 
A2 is smaller than Id/Z& XrC is larger than 
Xr,,,, and when EF satisfies the condition 
Xrm < I EF - E,( < XF~, the Pauli paramag- 
netic phase is stable, or metastable, at abso- 
lute zero, but a nonvanishing lattice distor- 
tion takes place. 

As a conclusion, our theoretical model 
predicts that small lattice distortions and 
small magnetic moments coexist or not at 
absolute zero, according to the exact value 
of the parameter JEF - E,I, where EF is the 
Fermi energy and E, the energy of the sin- 
gularity in the electronic density of states. 
This parameter could depend on the exact 
chemical composition of a given com- 
pound, and could vary from one compound 
to another. 

IV. Iuiluence of the Temperature and 
Phase Transitions 

For a nonvanishing value of the tempera- 
ture T, the contribution 6F, to the variation 

I They could only be metastable if higher-order 
terms in the expansion of tiF would lead to the exis- 
tence of more stable states with large distortions and 
magnetic moments. 
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of the free energy has the expression 

6F, = I_‘: ~*Wh+W - Ea dE 

- 
I ;~@hb(E - EF) dE 

+ b% - EF) Q + ild c & 
Y 

with 

ME - EF) 

3 , 

where /~a is the Boltzmann constant. 

(35) 

(36) 

Q is 
the total number of electrons contained in 
all the bands; it keeps the same value in the 
different phases, and we have 

Q = 1:: n*(E)f(E - E;) dE 

= 
I :I WW(E - EF) dE, (37) 

where we have introduced the Fermi-Dirac 
function 

f(E - EF) = (1 + exp $$-I. (38) 

Replacing the densities of states n(E) and 
n*(E) by their expressions (1) and (17), re- 
spectively, changing the variable of integra- 
tion from E to E + u~,~, where uy,,, has been 
defined by Eq. (27), expanding the integrals 
with respect to the small quantities +, as- 
suming that R(E) has a constant value 
R( Es) in the neighborhood of the singularity 
ES, and adding the temperature-indepen- 
dent contribution 6 F. to 6 Fe, we obtain 

where p is an integer, and 

Ap = ’ (+- 
(p - l)! --m 

ii(E - E&f@-‘)(E - EF) dE (40) 

1 
= (p - I)! I 4 

ii(E - Es) +a(~‘)( E - EF) dE (41) 

with the notationf(p)(X) = -$&j(X). 

The conservation of the total number of 
electrons is ensured by 

3 AP+I z (u,,c, + EF - Eilp 
Y.0 

- 2(& - Ea R(E,) = 0, (42) 

which is obtained from Eq. (37). 
By eliminating R(E,) between Eqs. (39) 

and (42), Eq. (39) can be written in the sim- 
pler form 

aF=iL 
p=, p + 1 AP+I @., + EF - EWp 

UY,O + ‘q (EE - EF)}. (43) 

In Eqs. (42) and (43), the effect of the tem- 
perature is contained in the coefficients A, 
= Ap( T), which can be calculated by Eqs. 
(40) and (38). 

Replacing, in Eq. (43), Eg - EF by its 
expansion with respect to the small quanti- 
ties t+, which can be calculated from the 
implicit Eq. (42), we get the explicit expan- 
sion of SF with respect to the i.+. Then, 
the z+,,, can be expressed as linear combina- 
tions of the relative volume variation q, the 
tetragonal shear strain E, the orthorhombic 
shear strain l ‘, and the three small magnetic 
moments my, by using Eq. (27), with 

I 

ezz = f + E. (44) 

By limiting, for instance, the expansion of 
6F to the terms of the fourth order in the 
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I(~,~, and retaining the linear terms only in 
the small quantity R(E,), we obtain 

ijF = &F(2) + 6Fc3) + 6Fc4) (45) 
with 

tiFc2’ = K(T) q2 + tM( T)(3e2 + d2) 
+ $Z( T)( t& + m$ + m;), (46) 

where 

K(T) = K. - QA2R(Es), (47) 

M(T) = MO + A2A2( T), (48) 

z(T) = Id + &MT), (49) 

Aq xy3s + d2) + $- (m$ + m’y + m;> 
I I 

+ A3(7-) 

4 
hz;{e(2m; + m; + &) 

+ E’<r?& - mzy)} 

+ A3t7-j 
-y- x3 E(d - EQ), (50) 

s.4j = _ R(&) A4(T) 
12 ~2( A2-q{2A2e(e2 - d2) 

A4( T) 
+ d(m$ - m2y>I} + 16 A4 

(d + E’4 + 6e2 d2) + & A4( T) A2Z: 

{E2( m$ + m: + 4mg + d2( m; + m’y> 

Ad T) + 2EE’ (m’y - t?&)} + --jTj- 

A:(T) 
z: hi’ + d’ + &) - 12&T) 

I 
R(G) 

1 + 3A2( T) 1 
Z~(m”y& + n&r& + w&m’y>. (51) 

The next step is to calculate the coeffi- 
cients AP( T) as functions of the tempera- 
ture. As we have shown in Section III, it is 
only when the Fermi energy EF is very 
close to the singularity Es that an instability 
of the cubic and Pauli paramagnetic phase 

can be expected. Moreover, in that kind of 
compound, phase transitions are observed 
for values of the temperature which are not 
small, as compared, for instance, to room 
temperature. Thus, in this temperature 
range, we can assume that IEF - Es1 is much 
smaller than ksT, and expand the coeffi- 
cients Ap( T) with respect to (EF - Es)lkB T. 
To do that, at first we expand the succes- 
sive derivatives of the Fermi Dirac function 
(38) in the form 

fJ’)(E - EF) = f(p)( E - Es + Es - EF) 

= z. -$ (Es - EF)qfP+Q)(E - Es). (52) 

Substituting the expansion (52) into expres- 
sion (40) we obtain 

Ap+dT) = ; z. +, (Es - EF)’ I,+, (53) 
‘4 * 

with 

ii(E) dE. (54) 

By using the explicit expression (2) of fi(E), 
we find 

C 
z2tn = 0, 12m+l = - - 

(kd-)2” 

7 (55) 

where 6,,o is equal to zero for m f 0, and to 
unity for m = 0, and 

rn = I_‘: Log 151 g’“‘(5) 4, (56) 

where 

The quantities I, are numbers, which are 
easily computed from Eq. (56); we find I1 = 
Log 1.14, I3 = - 0.43, Is = 0.49, and so on. 
Finally, from Eqs. (53) and (55), we obtain 

kBT 0.43 
MT) = C( Log 1.14~ + 2 

(Ec-sy - !y (EC&. . .), (57) 
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C EF - E, 
A3(7’) = - 5~ 

I 0.43 - f-$ (vy.. .], (58) 

1 c 
A4(T) = 6 (&t-)2 

I 0.43 -yy~)f..}. (59) 

Furthermore, the Fermi energy EF at the 
temperature T can be related to the value 
Z$ it would have at absolute zero (if the 
cubic and Pauli paramagnetic phase would 
remain stable in that limit) by writing the 
conservation of the total number of elec- 
trons. If we neglect R(E,), we find 

EF - E, = (E”F - Es) 

( 
Log IE”F - &I 

2.7~ )( 
Log x -1 

1.14v ) * (w 

It results from Eq. (47) that the calculated 
bulk modulus K = K(T) in fact does not 
depend on the temperature. Moreover, as 
R(E,) is very small, we have K = K0 > 0. 
Thus, in our model, we do not expect an 
instability of the crystal which would in- 
volve a variation of the volume alone. 
However, we shall see later that, because 
of the existence of coupling terms in Eq. 
(50), a small variation of the volume can be 
induced by a shear strain or by the appear- 
ance of small magnetic moments. 

Since keT is always much smaller than 
the parameter v, the expression of which is 
given by Eq. (4), it results from Eq. (57) 
that, for jEF - Es/ much smaller than kBT, 
the coefficient A*(T) is negative, with an 
absolute value which increases as the tem- 
perature decreases. And thus, since the pa- 
rameters MO and Id are positive, Eqs. (48) 
and (49) show that the shear modulus M(T) 
and the coefficient Z(T), which is propor- 
tional to the inverse of the Pauli paramag- 
netic susceptibility, decrease as the temper- 
ature decreases. Taking into account Eq. 
(60), we find that M(T) and Z(T) go to zero 

at critical values of the temperature 
T,,, respectively, the expression of 
are easily calculated as 

T,, = Tf,0’0 - eo(lE! - Es()), 

Tm = T%l - &n(l~% - EsIH, 

with 

kBT&‘)= 1.14vexp -2, 
( 1 

To and 
which 

(61) 

(62) 

(63) 

kBT$) = 1.14 v exp Id 

(-ZJ - 9 64 

%(lxj> = y (x Log #J2 

, (65) 

where by OL we mean one of the two sym- 
bols 0 or m. 

It results from Eqs. (61), (62), and (65) 
that the critical temperatures TO and T,,, 
have their largest values T$” and T$ when 
the Fermi energy Et exactly coincides with 
the energy Es of the singularity of the den- 
sity of states. And Eqs. (61) to (65) show 
that TO is larger (smaller) than T,,, when M,,/ 
y* is smaller (respectively larger) than Zd/Zi. 

First, let us consider the case when Mdh* 
is smaller than Zd/Z& and thus To is larger 
than T,. We see from expression (46) of the 
second-order terms 6F@) in the expansion 
of the free energy that, when the decreasing 
temperature T reaches the critical value To, 
the shear modulus M(T) goes to zero alone, 
whereas the coefficient Z(T) has yet a posi- 
tive value, the bulk modulus K(T) being al- 
ways positive as we have just established. 
Thus, when T lies in the neighborhood of 
To, and remains larger than T,, we expect 
as a precursive phenomenon an instability 
of the cubic phase with respect to a shear 
strain only, the other instabilities eventu- 
ally appearing as secondary effects to be 
induced by the coupling terms between the 
shear strain and the other parameters in Eq. 
(50). Assuming, as a starting point, that a 
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nonvanishing tetragonal shear strain e takes 
place alone, all the other parameters mx, 
my, mz, q, and E’ remaining equal to zero, 
we obtain from Eqs. (46), (50), and (51) the 
following reduced form of the expansion of 
the free energy variation: 

W[E] = #M(T) 6 + 4 A3(T)(X~)3 
+ i+ A4( T) (W4. (66) 

Equation (59) shows that the coefficient 
A4( T) is positive (at least for not too small 
values of the temperature T). Thus we can 
be sure that expression (66) of 8F[e] has an 
absolute minimum. When calculating that 
minimum, we find there exists a critical 
value Th > To of the temperature T, defined 
by the relation 

it4(T$ = 2X2 A:(Tl,)/3A4(T$ (67) 
and such that ~F[E] reaches its minimum 
for a value of E which is equal to zero when 
T is larger than T/J, and to 

1 
Eo(T) = A&T) I - 3A3(77 

r J 9A:(T)- 12A4(T) y } (68) 

when T is smaller than T& with the sign 
minus (plus) when As(T) is positive (re- 
spectively negative). 

Thus a structural phase transition takes 
place at the temperature Th, from the cubic 
phase, stable for T > T,$ to a tetragonal 
phase, stable for T < T& The amplitude 
q(T) of the tetragonal distortion is given by 
Eq. (68). The parameter A is negative. And 
according to Eqs. (58) and (60), the coeffi- 
cient A3( T) has the same sign as Es - Et. 
Thus the distortion Eo( T) is positive (nega- 
tive) when Et is smaller (respectively 
larger) than Es. The discontinuity EO( Th) of 
the distortion at the transition temperature 
Ti can be easily calculated by using Eqs. 
(67) and (68), and is found to be 

4 A3(TtJ eo(T$ = - -- 
A A4( G) * (69) 

It vanishes when A3(T$ does, and thus 
when Ei = Es, as follows from Eqs. (58) 
and (60). We conclude from that result that 
the structural phase transition is a first-or- 
der phase transition when Es # Es, and a 
second-order one when Et = Es. 

The latent heat associated’with the tran- 
sition is equal to the variation AU of the 
internal energy when going, at the tempera- 
ture T& from the state with E = l o( T$ to the 
state E = 0. By using the Gibbs-Helmoltz 
formula, the fact that when ~F[E] is mini- 
mum its first derivative with respect to E is 
equal to zero, and keeping only the largest 
term in the result, we obtain 

which, according to Eqs. (48) and (57), is 
equal to 

Au = Zi 3 A2 &I) [-$-%(T)]T=Tb 
= 8 C A2 &T,$). (71) 

It vanishes when Et = Es. 
The stability of the tetragonal phase, at a 

temperature T < T,$, with respect to a small 
orthorhombic distortion E’, can be dis- 
cussed by starting from the tetragonal state 
with its equilibrium distortion l o( T), and 
writing the expansion of the variation 
~&I(T), E'] of the free energy which 
results from a small additive orthorhombic 
distortion E’. By assuming mx = my = mz = 
q = 0, E = eo( T), and e’ f 0, in Eqs. (45), 
(46), (50), and (51), one gets 

= W'[ei,(T)] + r2d2 + I’4d4, (72) 

where GF[eo( T)] is obtained by substituting 
q,(T) to E into expression (66) and with 

l-2 = 8 A4A4( T) E:(T) 
- t A3 A3(T) co(T) + 4 M(T), (73) 

r4 = I$ A4 A4(T). (74) 
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Since the coefficient Ad( 7’) is positive, it 
follows from Eq. (74) that the coefficient I4 
is positive too. By eliminating M(T) be- 
tween Eqs. (68) and (73), the coefficient I2 
can be written in the form 

- iA3 A3( T) EO( T). (75) 

As, according to Eq. (68), the product 
hA3(T) ~g( T) is always negative, Eq. (75) 
shows that I2 is always positive. Thus, as 
the two coefficients I’, and r4 in the expan- 
sion (72) are positive, the minimum of 
6F[~(2’), e’] is obtained with E’ = 0, and 
the tetragonal phase is stable with respect 
to an orthorhombic distortion. 

Similarly, the stability of the tetragonal 
phase, at a temperature T < T,& with re- 
spect to a small relative variation q of the 
volume can be discussed by calculating the 
variation tiF[~~(T),q] of the free energy it 
produces. By assuming mx = my = mz = E’ 
= 0, E = EO( T), and q # 0, in Eqs. (45), (46), 
(50), and (51), one gets 

A3 RWs) 
W’ko(T), ql = 8&oU)l - - - 3 A2(7’) 

M,(T) + ; AO’)EOU’)I& Th + K q2. 

(76) 
We see from Eq. (76) that, because of the 
coupling term between ~g( T) and r), the te- 
tragonal distortion EO( T) induces a linear 
term in q in the variation of the free energy. 
Thus, although the bulk modulus K has 
been found large, positive, and temperature 
independent, as shown by Eq. (47), a small 
variation of the volume results from that 
linear term in q. Indeed, expression (76) is 
minimum when q has the value 

A3 RW 
‘-b(T) = 6K A*( T) 

[A3(T) + ; MT) Sol d(T). (77) 

It results from Eqs. (69) and (77) that, at the 

critical temperature T& the structural tran- 
sition induces a discontinuity in the relative 
variation of the volume, which is equal to 

A4 RWs) A4(G) --- rlo(TlJ = 24 K A2( Th) E% G). (78) 

It vanishes when Et = E 
When the temperature ‘!Z goes on to de- 

crease below T& whereas we still assume 
MdAz to be smaller than ZJZ& the Pauli 
paramagnetic tetragonal phase can become 
unstable with respect to the appearance of 
small magnetic moments my at some critical 
value of the temperature. To discuss that 
additive unstability, we shall write the ex- 
pansion of the variation ~F[Eo( T), qo( T), 
mx, my, rnz] of the free energy, obtained by 
puttinge=eO(T),q=qo(T),e’=O,andm, 
# 0, with y = X, Y, or 2, into Eqs. (45), 
(46), (50), and (51). Keeping only the terms 
which actually are at the most of fourth or- 
der, and neglecting that one of the fourth- 
order terms, the coefficient of which is pro- 
portional to A:( T)IAz( T), which is very 
small with respect to A4( T), as results from 
expansions (57), (58), and (59), one gets 

= WEO(T), qdT)l + 4 (m$ + m’y> 

+ UT) -m; + A4(T) 
4 32 

d(m”x+ m4y+ mi) (79) 

with 

A 
Z,(T) = Z(T) + - Z: eo( T) 4 

and 
13X A4( T) co(T) - 4 A3( Ul (80) 

Zz( T) = Z( T) + AZ: EO( T) 

13A A4(T) co(T) + 2 MTN. (81) 

The coefficients Zl( T) and Z2( T), respec- 
tively, vanish for critical values T1 and T2 of 
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the temperature T, which only differ from 
the temperature T,,, at which Z(T) vanishes 
by small corrections which are easily calcu- 
lated. We find 

C3h A.4 Td EO( Tm) - 4 Ad Tm~l], 032) 

13h 4 TnJ l o( Tml + 2 Ad WI). (83) = 7.47 !+ Jl - f. (87) 
e m 

It follows from Eqs. (82) and (83) that T2 < Furthermore, as the coupling term between 
TI < T,,,. By calculating, at a given value of 
the temperature T, the values of the mag- 

q and rnx = my = rnz = mo( T) in Eq. (50) is 

netic moments for which expression (79) is 
linear in q, the appearance of magnetic mo- 
ments induces a small relative variation of 

minimum, we obtain the volume equal to 

mx(T) = my(T) = 
0 for T> T,, 

ml(T) for T < T,, 

and 

(84) 

with 

(where i = 1 or 2). (86) 

Thus, as could have been expected, the 
magnetic moments in the tetragonal phase 
have the same value ml(T) at the sites X 
and Y, but a different value mz( 2) at the 
sites 2. Furthermore, there are no disconti- 
nuities at the critical temperatures Tl and T2 
in the variations of mi( T) and mz( T) with 
respect to the temperature. Thus the phase 
transitions which take place at these tem- 
peratures TI and T2, with appearance of 
small magnetic moments, are second-order 
phase transitions. 

A similar analysis can be made when Md 
A2 is larger than Id/Z:. Then it follows from 
Eqs. (61) to (64) that T,,, is larger than To. 

And, as the temperature T decreases, the 
first phase transition to take place is the 
second-order phase transition with the ap- 
pearance of small magnetic moments at the 
critical temperature T,,,. For Tb < T < T,,,, 
these magnetic moments have the same 
value mo( T) at the three sites X, Y, and Z, 
with 

ma(T)=+ -- J 
4 T) 

P Ad T) 

A R(Es) AAT) 
rid T) = iz --y- ~2( && T). (88) 

It vanishes when A3(T) does, and thus 
when Et = E 

When the timperature T goes on to de- 
crease below T,,,, the stability of the cubic 
phase can be discussed by using the expan- 
sion of the variation W'[mo( T), qm( T), E,E’] 
of the free energy, which is obtained by as- 
suming rnx = my = rnz = mo( T) in Eqs. 
(45), (46), (50), and (51). We get 

Wmd T), q,-,d T), ~‘1 
= WmdT), q,,dT)l + Wk,dl 

+ QA4( T)A2Zzmg( T)(3e2 + d2). (89) 

The expansion (89) leads to physical results 
that are entirely similar to those derived 
from Eqs. (66) to (78), providing that we 
replace the shear modulus M(T) by its cor- 
rected expression 

M,,,(T) = M( T) + fA4( T)A2Zz ma< T). (90) 

Conclusion 

The instabilities of the cubic and Pauli 
paramagnetic phase, which are observed in 



the manganese perovskite type of com- 
pounds when the temperature decreases, 
can be explained by the existence of a sharp 
and degenerate singularity in the electronic 
density of states in the neighborhood of the 
Fermi energy. The salient features of the 
structural phase transition are found in 
good agreement with the experimental 
data: the low-temperature phase is tetra- 
gonal, but generally is not orthorhombic; 
the c/u ratio can be larger or smaller than 
unity, according as the Fermi energy EF is, 
respectively, smaller or larger than the en- 
ergy Es of the singularity; the structural 
transformation generally is a first-order 
phase transition, but the discontinuity of 
the c/u ratio at the transition, and the corre- 
sponding latent heat, are the larger as 1 EF - 
Es1 is the larger, a second-order phase tran- 
sition being obtained in the special case 
when EF = Es. The strong Muence of the 
parameter EF - Es on all the previous prop- 
erties explains that one of the number of 
electrons occupying the bands. The appear- 
ance of small magnetic moments on the 
manganese atoms, as the temperature de- 
creases, is also explained. The critical val- 

x I”’ (E + Ey,o - E,)ii(E - Es) dE 
-lP 

phases, the contributions to the magnetic 
susceptibility other than the Pauli paramag- 
netic one, the effect of the substitutions be- 
tween N and C on the metalloidic site, and 
so on. But our model could be a reasonable 
starting point for further theoretical devel- 
opments, for instance, by taking into ac- 
count the interactions between next-near- 
est neighbors, the effect of the spin 
fluctuations, the Van Vleck paramagne- 
tism, and also by calculating the stability of 
periodic arrangements of the magnetic mo- 
ments which could lead to a nesting of the 
Fermi surface. The effect of the substitu- 
tions between N and C on the electronic 
density of states should be calculated by 
using the coherent potential approximation. 

Appendix 

By an obvious manipulation of the limits 
of the integrals, the first term of Eq. (20) 
can be transformed to 

ues T& and T, of the temperature, at which 
the structural and the magnetic phase tran- + ; j-~-E7’u+E5 (E + Ey,,, - E&E 

sitions, respectively, take place, simply de- 
pend on the parameters of the model: the 
two cases with T,,, < Tb and T, > T/I are 
found as being possible, and the special 
case with T, = T& cannot be excluded. The 
observed variations of the volume are eas- 

c (E,,, - Es) I” fi(E - Es) dE + 6 I”’ 
-l.= 

which is equal to 
- Es) dE, (A.l) 

ily explained by the existence of coupling 
terms between the volume and the shear 
strain or the magnetic moments in the ex- 
pansion of the free energy. These terms are 
proportional to the electronic transfer be- 
tween the large and the narrow band, and 
thus they are linear in the volume variation. 

Efi(E - Es) dE + z Eyp /~;-E”u+Es 

fi(E - Es) dE + ; j-~-E’*a+Es 

(E - E,)fi(E - Es) dE. (A.2) 

But the summation of Eq. (14) on the indi- 
cesy=X, Y,Zanda= +,-leadsto Of course, besides the previous success, 

a lot of phenomena have been observed in 
these compounds that remain to be ex- 
plained, such as the different types of mag- 
netic ordering in the low-temperature _ _ I 

2 (Ey.u - Es) = 2 A rl. (A.3) 
YP 

II I. Bv renlacine the first term of Ea. (20) bv its 

292 JARDIN AND LABBE 



BAND STRUCTURE IN METALLIC PEROVSKITES 293 

expression (A.2), and taking into account 13. M. BARBERON, E. FRUCHART, R. FRUCHART, G. 

the relation (A.3), we obtain Eq. (22). 
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